Jump to main content
CRC/TR 39: Production technologies for light metal and fiber reinforced composite based components with integrated piezoceramic sensors and actuators
Sub-project A1

Subproject A1

Manufacturing Technologies for Piezoelectric Fibers and Laminates for Interation into Lightweight Structures

Project Managers:

Prof. Dr. rer. nat. habil. Alexander Michaelis
Technische Universität Dresden
Fakultät für Maschinenwesen
Institut für Werkstoffwissenschaften
Professur für Anorganisch-Nichtmetallische Werkstoffe
01062 Dresden

Telephon: +49-(0)351 2553 7694
Telefax: +49-(0)351 2553 7600
E-Mail: alexander.michaelis@ikts.fraunhofer.de


Dr. Sylvia Gebhardt
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Abteilung Intelligente Materialien und Systeme
Winterbergstraße 28
01277 Dresden

Telephon: +49-(0)351 2553 7694
Telefax: +49-(0)351 2554 160
E-Mail: sylvia.gebhardt@ikts.fraunhofer.de



Presenting the Research Program

Scientific objective target

•    Design and production of sensor-actuator-modules based on piezoceramic fibers and plates to be integrated into lightweight structural components (modules: e.g. piezofiber composites and LTCC/PZT modules)
•    Solution of module packaging regarding to geometry, arrangement of piezoceramic component and electrical termination allowing serial manufacturing as well as form-locking and reliable integration into lightweight structures
•    Characterization and interpretation of effective material data

Single component
  Module
Structural component

Research program

Piezoceramic fibers

1.    Serial production of piezoceramic fibers
2.    Development of methods for single fiber characterization
3.    Serial production of piezofiber composites
4.    Characterization and optimization of fiber-matrix-interface
5.    Adjustment of composite design to process chain demands
6.    Adjustment of fiber diameter and arrangement to process chain demands
      
Piezoceramic fiber       WP 1+2
Piezofiber composite        WP 3+4
Piezofiber composite
disc    
WP 5
Piezofiber composite bar   WP 6

Piezoceramic laminates

1.    Production and characterization of LTCC/PZT modules
2.    Investigation of the influence of mechanical stresses onto electromechanical properties of LTCC/PZT modules
3.    Investigation and optimization of LTCC/PZT as well as LTCC/metal interface properties to achieve highest force transfer
4.    Integration of additional functional components into LTCC/PZT module for process control
5.    Characterization of operating behavior of LTCC/PZT modules

LTCC/PZT module    WP 1
Integration/interfaces    WP 2+3
Augmented functionality    WP 4
Operating behavior    WP 5

Methods

Piezoceramic fibers

•    Fiber development: optimized slurry formulation, determination of spinning parameters
•    Characterization: micro-strain-, -bend-, -pressure-methods, grayscale correlation (fig. 1)
•    Composite development: defined fiber arrangement, selection of matrix materials
•    Fiber/matrix adhesion: single fiber fragmentation test (fig. 2)

fig. 1 fig. 2

Piezoceramic laminates

•    Laminate development: optimization of packaging of integrated circuits for LTCC/PZT modules
•    Microstructure analysis: light-, electron beam-, ultrasound-microscopy, X-ray analysis (fig. 3) 
•    Electromechanical characterization: measurement of electrical impedance, ferroelectric hysteresis, deflection and force (fig. 4)
•    Operating behavior: electrical cycling tests
 
fig. 3
fig. 4

Results in the 1st application term

Piezoceramic fibers

•    Successful fabrication of piezoceramic fibers using polysulfone process:
      -    Free choice of the piezoceramic powder
      -    Porosity 3%
      -    Adjustment of fiber diameter: 200-1000 µm (fig. 5)
•    Preparation of piezofiber composites with irregular fiber arrangement (fig. 6). Characterization of effective material data.
•    Characterization of mechanical and electromechanical properties of piezoceramic fibers and comparison with state-of-the-art (fig. 7).
  
fig. 5 fig. 6 fig. 7

Piezoceramic laminates

•    Design and development of novel LTCC/PZT modules fully based on inorganic materials using ceramic multilayer technology (fig. 8). The following benefits could be achieved therewith:
      -    Mechanical stabilization and electrical termination of the piezoceramic component
      -    Electrical insulation to aluminum metal matrix prepared by die-casting
      -    Reliable interface to aluminum matrix.
•    Demonstration of actuator performance using deflection measurements (fig. 9).
•    Successful integration of LTCC/PZT modules into aluminum plates by die-casting. Solution of outer electrical termination by means of laser soldering has to be solved (fig. 10).

fig. 8 fig. 9 fig. 10




Social Media

Connect with Us: