Jump to main content
DFG CRC/Transregio 39 PT-PIESA
SP C09

Model-based ultrasound imaging for spatially resolved flaw detection in layered composites

S. J. Rupitsch
  1. Aims
  2. Methods
  3. Publications
  4. Contact


Constructing and realizing a specific acoustic microscope

  • Spatially resolved flaw detection between the embedded piezoceramic module and the surrounding composite material
  • Uncertainty of measurement in lateral direction < 100 µm

Guidelines for applying synthetic focusing techniques

  • Optimized lateral spatial resolution
  • Shortened measurement time and postprocessing

Evaluating flaws regarding the layered composites’ functionality

  • Qualitative and quantitative evaluation
  • Appearance and Changing of flaws under continuous operating conditions



Efficient simulation by SIR/FE method
  • Computing sound fields inside the layered composite and the output signals of an acoustic microscope with respect to
    • Geometry and material parameters
    • Flaw positions, number of flaws, etc.
  • Matched filter kernel for synthetic focusing
    • Sound propagation inside the layered composite
    • Mode conversion at boundaries of material layers
  • Comparison of various filter kernels
    • Simulated output signals serve as input
    • Determination of the lateral spatial resolution
  • Accuracy of measuring the flaws‘ dimensions
Ultrasound-based inspection
  • Enhancement and modification of an already existing ultrasound test site
  • Investigating samples
    • Ultrasound images by Through Transmission and Pulse Echo Mode
    • Localization of flaws in layered composites
  • Applying appropriate signal processing algorithms


Reviewed Publications

[Wue17] Wüst M, Eisenhart J, Rief A, Rupitsch SJ (2017)
System for acoustic microscopy measurements of curved structures, In: Technisches Messen. doi: 10.1515/teme-2016-0085
[Schr13] Schrapp M, Scharrer T, Goldammer M, Rupitsch SJ, Sutor A, Ermert H, Lerch R (2013)
Artifact reduction in nondestructive testing by means of complementary data fusion of X-ray computed tomography and ultrasonic pulse echo testing. Meas Sci Technol 24:1-11
[Rup07a] Rupitsch SJ, Zagar BG (2007)
Acoustic microscopy technique to precisely locate layer delamination. IEEE Trans Instrum Meas 56(4):1429-1434
[Rup07b] Rupitsch SJ, Kindermann S, Zagar BG (2007)
Solution of a non-linear inverse problem to identify the surface normal velocity of ultrasound transducers. Elektrotechn Informationstechn 124(7-8):260-265
[Rup08a] Rupitsch SJ, Kindermann S, Zagar BG (2008)
Estimation of the surface normal velocity of high frequency ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 55(1):225-235
[Rup08b] Rupitsch SJ, Zagar BG (2008)
Verfahren zur Erhöhung der örtlichen Auflösung bei synthetisch fokussierten Ultraschalltransducern. Techn Messen 75(4):259-267
[Rup08c] Rupitsch SJ (2008)
Entwicklung eines hochauflösenden Ultraschall-Mikroskops für den Einsatz in der Zerstörungsfreien Werkstoffprüfung. Dissertation Johannes-Kepler-Universität Linz

Other publications

[Wue16] Wüst M, Nierla M, Rupitsch SJ (2016)
A Model-Based Synthetic Aperture Focusing Technique for Acoustic Microscopy, In: IEEE IUS. Tours, France, 2016.
[Wue15a] Wüst M, Nierla M, Rupitsch SJ (2015)
Modellgestützte Ultraschallmikroskopie zur dimensionellen Erfassung von Fehlstellen in Festkörpern. In: DAGA 2015. Nuremberg, Germany 2015.
[Wue15b] Wüst M, Nierla M, Rupitsch SJ (2015)
Towards a model-based high-resolution ultrasonic measurement system for non-destructive testing. In: CRC/TR 39 - 5th Scientific Symposium Proceedings. Dresden, Germany 2015.
[Scha12] Scharrer T, Koch A, Fendt KT, Rupitsch SJ, Sutor A, Ermert H, Lerch R (2012)
Ultrasonic defect detection in multi-material axis-symmetric devices with an improved synthetic aperture focusing technique. In: IEEE IUS. Dresden, Germany, pp 1039-1042
[Scha13] Scharrer T, Koch A, Rupitsch SJ, Sutor A, Ermert H, Lerch R (2013)
Ultrasonic imaging of a turbine blade model using 360° synthetic-aperture-focusing-technique and reverberation suppression. In: IEEE IUS. Prague, Czech Republic, pp 150-153


Project Manager:

Dr. techn. Stefan Johann Rupitsch
Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Sensorik
Paul-Gordan-Str. 3/5
91052 Erlangen

Phone: +49 9131 85-23141


Social Media

Connect with Us: